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Motivated by recent experiments and numerical results, we propose a constitutive relation to describe
the friction beween two surfaces separated by an atomically thin layer of lubricant molecules. Our phe-
nomenological approach involves the development of a rate and state law to describe the macroscopic
frictional properties of the system, in a manner similar to that which has been proposed previously by
Ruina [J. Geophys. Res. 88, 10359 (1983)] for the solid on solid case. In our case, the state variable is in-
terpreted in terms of the shear melting of the lubricant, and the constitutive relation captures some of
the primary experimental differences between the dry and lubricated systems.

PACS number(s): 46.90.+s, 46.30.Pa, 81.40.Pq, 83.20.Bg

I. INTRODUCTION

As mechanical devices become smaller and smaller, an
understanding of frictional properties at microscopic
scales becomes increasingly important technologically
[1]. Of particular interest are the regimes in which the
behavior of the small scale system may differ qualitatively
from bulk properties [2]. The frictional properties of lu-
bricated interfaces provide an excellent example of such
behavior. When two smooth surfaces are separated by a
bulk layer of lubricating liquid, e.g., motor oil between
the gears of an automobile engine, one typically expects
that the lubricant will facilitate the relative motion of the
surfaces. That is, first the overall friction will be reduced,
and second the surfaces will slide smoothly relative to
one another avoiding abrupt and often damaging stick-
slip dynamics. In most of these cases, frictional dissipa-
tion is well characterized by the bulk viscosity 7 of the
fluid so that the friction force can be written to a good
approximation as Fy,, =7V, where V is the relative ve-
locity of the surfaces. However, the behavior changes
substantially when the thickness of the lubricant layer is
reduced to atomic dimensions. In this regime, referred to
as boundary lubrication, characteristic relaxation times
become orders of magnitude greater than those of the
bulk [3]. These thin lubricant films can exhibit solidlike
properties, including a critical yield stress and a dynami-
cal shear melting transition, which can lead to stick-slip
dynamics in certain regimes [4,5].

Recent experiments have made important contribu-
tions to our understanding of this phenomenon, both
qualitatively and quantitatively. These measurements are
made using a surface force apparatus (SFA), the mechani-
cal equivalent of which is illustrated schematically in Fig.
1. The block and the surface on which it slides corre-
spond to two atomically smooth mica surfaces, which are
separated by a few molecular layers of lubricant mole-
cules across a contact area roughly 10 um in diameter.
The slider block is attached to one end of a harmonic
spring which is pulled at the other end at velocity V. One
of the key observations [5] is the existence of a critical
pulling velocity ¥, which marks the crossover from
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stick-slip dynamics (V' <V_) to continuous sliding at
roughly constant velocity (¥ > V), an example of which
is illustrated in Fig. 2(a).

In this paper we propose a phenomenological constitu-
tive relation which describes the frictional force F, on
the sliding block as a function of the macroscopic vari-
ables which characterize the motion, including position,
velocity, and time. In the field of solid mechanics such
an approach was introduced by Ruina [6] and has been
applied successfully to a wide range of solid on solid sys-
tems with roughly micron scale roughness on the surfaces
[7,8]. Such equations are referred to as rate and state
laws, where the rate variable refers to the sliding velocity,
and the state variable is meant to capture all memory
dependent effects. In our case, the state variable will
represent the degree of melting in the lubricant layer, and
the constitutive relation at least qualitatively captures
many aspects of the experimental data.

Ultimately the frictional properties of any system are
determined by microscopic features such as the contact
points between the dry surfaces, or the microscopic
forces molecules in a lubricant film exert on the surfaces.
The state of the system is most directly specified in terms
of the microscopic configuration, which in these driven

F k <= —
0 .

T lubricant

FIG. 1. The mechanical analog of the SFA experimental set-
up corresponds to a block of mass m connected to an elastic
spring of spring constant k which is pulled at one end at veloci-
ty V. The block is in contact with a lubricated surface. The
surface of the block as well as the sliding surface are composed
of atomically smooth mica, and hexadecane is a typical lubri-
cant. The block displacement measured with respect to the sta-
tionary lower surface is U, the spring force is F=—k (U — V1),
and the friction force is F;. The radius of the contact area is of
order tens of microns and the thickness of the lubricant is of or-
der 10 A. Typical drive velocities are in the range 0.001-10
pum/s.
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FIG. 2. Traces of the spring force F as a function of time for
increasing pulling velocities V. (a) Experimental data from Ref.
[5] for a hexadecane film at 17°C (T < T, ) with step increases in
velocity ¥V marked by the dotted lines. The critical velocity for
this system is ¥,=~0.4 um/s. (b) Numerical solutions of Egs.
(6)—(8) with the parameter values marked in the figure. In each
case there is a discontinuous transition from stick-slip behavior
to steady sliding at ¥ =¥, which we take to be the first velocity
at which the stick-slip spikes disappear as the velocity is in-
creased in small steps.

systems is a nonequilibrium state. The basic assumption
behind the phenomenological rate and state approach is
that the microscopic forces are sufficiently self-averaging
to produce a macroscopic force law which is determinis-
tic, and depends only on the macroscopic variables which
are associated with the motion. In this equation the state
variable is associated with a history dependent mean field
value, characteristic of some average property of the in-
terface. Ultimately, the goal is to derive the constitutive
relation from a microscopic model, and in practice the
phenomenological approach is typically the first step to-
wards developing intuition about microscopic models. In
fact, some recent progress towards microscopic deriva-
tions of rate and state laws has recently been made for
the solid on solid case [9].

The remainder of this paper is organized as follows. In
Sec. II we provide a summary of relevant experimental
and numerical studies of the frictional properties of thin
lubricating films. In Sec. III we introduce a rate and
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state law for boundary lubrication. In Sec. IV we present
a series of numerical and analytical solutions of the mod-
el in regimes that are designed to mimic experiments. We
conclude in Sec. V with a summary of our results and a

discussion of some of the important directions for future
work.

II. EXPERIMENTS AND NUMERICAL SIMULATIONS

In this section we summarize certain key results from
previous experiments by Yoshizawa and Israelachvili 5]
along with numerical simulations of Robbins and
Thompson [10], and Persson [11] all of which have
motivated the constitutive relation that we will introduce
in Sec. III.

For systems such as that illustrated in Fig. 1, one of
the key experimental observations is a crossover from
stick-slip behavior to steady sliding at a critical velocity
V, as illustrated in Fig. 2(a). Yoshizawa and Israelachvili
found that the critical velocity can depend on a variety of
experimental parameters including the load, the tempera-
ture, and the spring constant. Experiments which will
determine the dynamical phase diagram for the system
are currently in progress [12].

In the stick-slip phase, most of the previous work has
focused on systems in which the slip times are much
longer than the characteristic period of the mass spring
system. Because the slip times are long, these systems are
referred to as “overdamped.” Such behavior is prevalent
for lubricants that consist of complex chain shaped or
branched molecules. The alternative ‘“‘underdamped”
behavior, in which slip times are of order v'm /k , is more
common in simpler systems such as the silicone liquid oc-
tamethylcyclotetrasiloxane (OMCTS), a spherical mole-
cule. While there are instances in which both under-
damped and overdamped responses have been obtained
for the same lubricant, such crossovers have not yet been
studied systematically.

The generic shape of an overdamped slip pulse is
represented in Fig. 2(a). While the block is stuck the
spring force rises linearly with time, with a slope given by
the product of the spring constant and the pulling speed.
When some threshold force is reached, the block abruptly
begins to slide, and the spring force relaxes roughly ex-
ponentially with time until the block suddenly resticks.
Note that an infinitely sharp discontinuity in the slope of
the spring force either at the beginning or end of the slip
would imply a discontinuity in the velocity of the block.
While experimentally the transitions are at least slightly
rounded, the clear appearance of sharp changes in Fig. 2
both at the beginning and end of the slip pulse does indi-
cate that the time scales over which the velocity is chang-
ing is relatively short. Less obvious in the figure is the
fact that the duration of slip appears to increase as the
velocity is increased [12]. Intermittent slip pulses have
also at times been observed for pulling speeds near V.
The transition from stick-slip to steady sliding is discon-
tinuous for the overdamped pulses, in some cases with
relatively little variation in the amplitude of stick-slip
until the transition velocity is reached. In contrast, re-
cent experiments [12] suggest that in the underdamped
case the transition is continuous. That is, the stick-slip
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amplitude approaches zero continuously as ¥ —V,.

The slip pulses that are observed for boundary lubrica-
tion are sufficiently different from the generic behavior of
dry interfaces [7,13,14] such as those which motivated
Ruina’s rate and state law, that it is clear that the consti-
tutive laws describing the two classes of systems must be
different. Like the overdamped and underdamped pulses

described above, for dry interfaces there are also two dis-
tinct classes of stick-slip associated with two different

time scales [15]. The first consists of inertial pulses,
which like the underdamped pulses consist of slips which
last a time of order V'm /k. However, as mentioned
above for boundary lubrication the transition in this re-
gime appears to be continuous, while for dry interfaces in
this regime the transition is discontinuous [14]. The
second case, like the overdamped pulses discussed above,
is dominated by a time scale associated with the friction.
However, for dry friction the slips start slowly, exhibiting
a creeplike behavior until the block is displaced a charac-
teristic distance D, after which the friction drops much
more rapidly and the block resticks [8]. In this case, the
amplitude of stick-slip decreases continuously with pul-
ling speed, and the transition to steady sliding is continu-
ous [16].

Much of the current theoretical understanding of the
frictional properties of boundary lubrication has been the
result of large scale atomistic modeling of these systems.
In a series of molecular dynamics simulations, Robbins
and Thompson [10] considered the case of a lubricant a
few molecular layers thick consisting of spherical or
chainlike molecules between two crystalline plates. The
system was driven in two separate ways: first they applied
a constant relative shear force, and second a spring of
stiffness k was attached to one of the plates and pulled at
the other end with constant velocity V. The second case
mimics the experimental setup of Yoshizawa and Israe-
lachvili illustrated in Fig. 1, and in this regime the simu-
lations exhibit a crossover from stick-slip to steady slid-
ing as a function of V as observed experimentally. Based
on their simulations, Robbins and Thompson concluded
that the stick-slip dynamics could be understood in terms
of a dynamical shear melting of the lubricant layer. That
is, when the surfaces were stuck to one another, the lubri-
cant molecules were in a solid (though not necessarily
crystalline) phase, while the onset of relative motion was
associated with a melting transition, accompanied by an
increase in the thickness of the layer and a sharp decrease
in the Debye-Waller factor from a value which is charac-
teristic of solids, to a value which is characteristic of
liquids. The related case of adsorbed molecules on a sur-
face was considered by Persson, who also concluded that
shear melting played an important role in the transition
[11].

The stop-start experiments of Yoshizawa and Israe-
lachvili [5] are one of the strongest experimental indica-
tions that stick-slip behavior is associated with some sort
of melting transition. The experiments consist of three
stages. First, the black is pulled with velocity V, >V,
i.e., in the steady sliding regime. Second, the pulling is
abruptly discontinued for a time ¢,. Third, pulling is
reinitiated at the initial speed ¥;,. When the spring force
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F(t) is monitored, it is observed experimentally that for
stopping times ¢, <ty, F returns smoothly to the value it
had taken prior to the stopping interval, while for ¢, > ¢,
the system initially remains stuck, producing a “stiction
spike” AF in F (t), before the force returns to the value it
had taken prior to the stopping interval. Figure 3(a) il-
lustrates the experimental data for AF as a function of
stopping time #,. The sharp onset at ¢, =ty is referred to
as the nucleation time of the frozen state.

Finally we note that the stop-start experiments is an
additional situation in which the results of boundary lu-

brication and dry friction experiments differ qualitatively.
In the case of dry friction, stop-start experiments such as
those described above result in a stiction spike which in-
creases logarithmically with time, with no sharp cross-
over analogous to 7y [17].
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FIG. 3. The height of the stiction spike AF as a function of
the stopping time ¢, in the stop-start experiments. (a) Experi-
mental data from Ref. [5] for hexadecane at T=17°C. (b) Cor-
responding numerical results at the parameter values indicated.
In both the experimental and numerical curves, there is a sharp
increase in AF at a characteristic stopping time. At least for
these parameter values, the characteristic time appears to be
somewhat more sensitive to velocity in the model than is the
case in the experiment.
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III. RATE AND STATE LAW
FOR BOUNDARY LUBRICATION

In this section we propose a constitutive relation to de-
scribe the frictional properties of boundary lubrication.
The contact area is small enough and the mass is rigid
enough that elastic deformation of the slider block in Fig.
1 is negligible. Thus the dynamical behavior is reason-
ably well represented by motion of a single degree of free-
dom, and the equation of motion is simply given by

mU=—k(U—Vt)—F, , (1)

where U is the displacement of the block, dots denote
time derivatives, and the parameters are defined as in the
schematic experimental diagram (Fig. 1). In principle,
the net friction frictional force F,, at any given moment
in time will depend on the details associated with the mi-
croscopic properties of the lubricant. However, in cases
where the system is sufficiently large to be self-averaging,
an effective dependence of the friction on macroscopic
variables such as time, displacement, and velocity of the
sliding block will emerge.

As in the solid on solid case, our relation will depend
on the rate U and state 6 of the system. However, our 6
will be at least loosely associated with the degree to
which the lubricant layer is melted [18]. We begin by
writing the friction forces Fj, in its fully dimensional form
as follows:

Fy=6+pU , (2)
where

2 (e_emin)(emax_o) .

0= - —a(0—0,,;,,)U . (3)

We constrain 0 to lie between 6,;, and 6,,,,, correspond-
ing to the fully melted and frozen states of the lubricant,
respectively. The friction force F, corresponds to the
maximum static friction when U=0, and the dynamic
friction when U =2 0. If the block were to slip backwards
(U <0), then we would have to replace U in (3) with its
absolute value and define

Fy=+6+pU , 4)

with F as above corresponding to the dynamic friction
when U >0, Fy corresponding to the dynamic friction
when U <0, and %0 corresponding to upper and lower
bounds on the static friction. However, as described
below we will choose 6,,;, and 6,,, in a manner which
prevents the block from sliding backwards, which is typi-
cally the case in experiments.

Physically, the equations can be interpreted as follows.
The friction F, depends both on the degree to which the
system is melted 6, and the relative velocity U of the in-
terface. The simplest expression we can choose corre-
sponds to a linear dependence on 6 as well as a linear
dependence on U, the latter of which has the familiar
form associated with a simple fluid with viscosity .
When U =0, F,=0 is the maximum state friction. Here
the magnitude of the static friction threshold depends on
time but is bounded above by 0,,,, while 8, corre-
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sponds to a lower bound on both the static and dynamic
friction.

Equation (3) describes the evolution of the state vari-
able. Alone, the first term on the right hand side de-
scribes the behavior when the mass is at rest (U =0). Ex-
perimentally stick-slip is only observed at temperatures T
at which the film at rest is frozen. Therefore, we have
constructed this term so that the two U =0 stationary
states correspond to an unstable melted state 6=0_,,
and a stable frozen state 6=80,_,,,, such that from any ini-
tial state 6+%0,,;, the film will tend to freeze at a charac-
teristic rate proportional to 7~ !. More generally, at
higher temperature one expects a transition at which
0=0,,;, becomes stable, and 6=86,,,, is no longer a fixed
point. However, because we are interested in the dynam-
ical (as opposed to thermal) crossover from stick-slip to
stable sliding we will not consider explicit temperature
dependence here. The second term on the right hand side
of (3) is the simplest term which can be used to describe
the tendency of the film to melt as a consequence of the
relative shear. As we will see shortly, 1/a plays the role
of a characteristic melting length (i.e., slip distance over
which the melting transition takes place). Finally, we
note that the forms of Eqgs. (2) and (3) were chosen in an
effort to construct a minimal model which is consistent
with various qualitative aspects of the experiments. We
expect that certain higher order terms may be found to
be relevant upon more detailed quantitative comparison
with the data.

In the next section we will focus on solutions obtained
when Egs. (2) and (3) represent the friction law in the ex-
perimental setting illustrated in Fig. 1. We assume the
motion of the slider block can be represented by a single
degree of freedom, with center of mass position U(?) as
described by Eq. (1). For convenience we set the values
of the parameters 6, ;, and 0, ,, in a manner which rules
out the possibility of backwards sliding, since backwards
sliding has been observed only rarely in experiments, and
only in the underdamped regime. In our case, a sufficient
condition to rule out the possibility of backwards sliding
is O, <36, Which is a reasonable assumption since
the static and dynamic friction, roughly 6, ,, and 6, re-
spectively, typically differ by a factor of roughly 2 [19]
(i.e., Opa=~20,;,). This particular criterion is obtained
by considering the bounding case where the block reaches
the friction threshold at t =0 with the maximum value
0(t =0)=0,,,,, and the sliding friction is simply taken to
be 0,,;,, which is a lower bound on values obtained from
Eq. (2). In that case, when 0,_,, <360,,, in the solution of
(1) with F, given by FZ in Eq. (4) the block will slip and
subsequently restick when U=0 without sliding back-
wards.

Finally, before we solve for the motion we will simplify
our notation by reducing the equations to dimensionless
form. First, we rescale 6 so that it lies in the unit inter-
val. That is, 0'=(0—0,,;,) /(0. — Oin), so that 6'=0
corresponds to the fully melted state, while 8’=1 corre-
sponds to the fully frozen state. Second, we rescale time
so that t'=t/V'm /k. As a result in the dimensionless
equation the characteristic period of the mass spring sys-
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tem in the absence of friction is 27, and the characteristic
slipping time of a mass subject to constant dynamic fric-
tion is 7. Finally, we shift the origin and rescale the dis-
placement according to '=(k/FINU —(Opin k)],
where Fy=0,,,x— Omin- This has the effect of (i) absorbing
an overall additive constant in the friction law, and (ii)
setting the characteristic slip distance in the absence of
sliding friction and in the limit of infinitesimal pulling
speeds equal to two.

In these units, there are four remaining variables,
which are determined by materials properties of the sys-
tem and external parameters such as the pulling speed.
In terms of the original variables these are

V'=vVmk /%, ,

B'=B/Vmk , -
T=Vk/m/%,,
a'=aF,/k .

Dropping the primes, the equations describing the
motion of the slider mass become

=—(U—Vt)—F,, (6)

where the friction is

_ (_0076], 0=0 7

07 |e+BU, U>0 @
and

9=M—a9(7. (8)

With four remaining parameters it is still possible to
obtain a variety of behaviors from these equations. Here
we will focus on the qualitative behavior of the model in
regimes which appears to best resemble the overdamped
experimental data of Yoshizawa and Israelachvili. Addi-
tional experiments are necessary to quantitatively test
these equations and to obtain a detailed fit of Egs. (6)—(8)
although preliminary results are quite promising [20].

IV. COMPARISON WITH EXPERIMENT

In this section we discuss solutions of Egs. (6)—(8). We
focus on specific experimentally observed phenomena dis-
cussed in Sec. II. In Sec. IV A we discuss the transition
from stick-slip to steady sliding. In Sec. IV B we discuss
stop-start experiments in the steady sliding regime. We
will also discuss in Sec. IV C some approximate analytical
solutions for the pulse shapes and transition velocity.

A. Transition from stick-slip to steady sliding

Like the experimental system, our model exhibits a
transition from stick-slip to steady sliding at a critical ve-
locity V,. Figure 2(b) illustrates the value of the pulling
spring force F =—(U —Vt) in Eq. (6) which exhibits
similar qualitative behavior to the experimental data of
Yoshizawa and Israelachvili [S], illustrated in Fig. 2(a).
For V <V, the mass alternates between sticking, where
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the spring force increases linearly with time, and slipping,
where the spring force drops sharply, relaxing in an
exponential-like decay until at some later time it resticks
abruptly. For both the model and experimental parame-
ters shown here, the duration of the slip exceeds the
characteristic slip time of an underdamped spring-block
system (7 in our scaled units), corresponding to the
“overdamped” regime. For our results this is not too
surprising given the large value of 3, chosen here because
large values of B give the best fits to experiments. How-
ever, in the model it is also possible to obtain long slip
times in regimes where 3 <2, which marks the crossover
from overdamped to underdamped behavior in a damped
harmonic oscillator with no state dependence. In both
the model and experiments the transition from stick-slip
to steady sliding is discontinuous. Of course, because the
model corresponds to a single deterministic degree of
freedom, it will not exhibit the intermittent behavior
sometimes observed near the transition in the experimen-
tal system. However, like the experimental data, in the
model the duration of slip becomes longer as the pulling
speed increases. There are also parameters ranges, for
both the model and experiment, in which the systems ex-
hibit short, or underdamped pulses, in which the slip
time is of order 7. This regime will be addressed in detail
in a later publication.

B. Stop-start experiments

As described in Sec. II, in the stop-start experiments
the block is pulled at a velocity ¥V, > ¥V,, then pulling is
ceased for a stopping time ¢, after which pulling at the
original speed is resumed. The height of the stiction
spike AF(t;) refers to the difference between the max-
imum spring force observed after pulling is resumed and
the steady state force at velocity ¥V, and is illustrated for
the experimental system in Fig. 3(a). Note that AF(t,)
increases sharply at a time #,=t,. This suggests that if
t; <ty the system remains melted throughout the stop-
ping interval, and smoothly resumes sliding at velocity V
when pulling begins again. In contrast, when z, > t,, the
system has time to freeze during the stopping interval. In
that case, when the pulling is resumed the block will stick
until the force reaches the friction threshold (determined
by the extent to which the system has frozen). This in
turn determines the maximum value of the friction, be-
fore returning to the steady sliding state. In this sense
is associated with the nucleation time for the frozen state.

It is straightforward to repeat this experiment for our
model. We solve Egs. (6)—(8) with

Vi, t<0
V=V()= 10, 0<r=g, 9)
Vi, t>t,

and constrain the pulling speed such that
V. <V, <(ar)”!, so that the steady state value of 6 [Eq.
(10) below] is nonzero [21]. The results are shown in Fig.
3(b). While we always detect some nonzero AF(z,), as in
the experiment, there is a sharp onset in AF(z,) at a stop-
ping time ¢, =1t*.
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C. Analytical solutions

While the system that we study is in principle very
simple—a single rigid block driven by a spring and slid-
ing on a surface subject to the friction Fy,—Eqgs. (6)—(8)
are sufficiently nonlinear that they defy exact solutions
except in special circumstances. However, it is still possi-
ble to piece together a combination of exact and approxi-
mate solutions, each of which is valid over some limited
time interval, to describe with high accuracy the stick-
slip motion as well as the transition to steady sliding.
Below we consider four different regimes. The first, and
simplest case is the steady state behavior, which is appli-
cable when the system slides at constant velocity. This is
followed by three different cases which describe the
behavior of 6 during different portions of the stick-slip
pulse: the growth of 6 corresponding to the freezing
transition when the block is at rest, the initial stages of
sliding which corresponds to a rapid decrease of 6 in a
“slip-melting™ transition, and the middle and later stages
of sliding and resticking in which 6 slowly increases at a
rate which depends on the slip speed.

Solutions of the equation of motion (6) in the three
cases describing different parts of the stick-slip pulses are
straightforward to calculate and can be combined to ob-
tain an excellent match to our numerical solutions of the
full equation of motion in the overdamped regime (see
Fig. 5). Perhaps the most useful aspect of the analytical
solution is the insight it provides regarding the nature of
the state variable in each of the four different regimes,
where in each case 0 may depend most directly on
different macroscopic variables-—time, position, and ve-
locity. Finally, on the basis of these solutions, it is also
possible to extract a criterion for the transition from
stick-slip to steady sliding, that is, a critical velocity V..

Velocity-weakening steady sliding

First we consider the steady state value of 0, corre-
sponding to constant relative velocity U=V at the inter-
face. This case corresponds to the behavior of 6 in the
steady sliding regime, ie., V=V,. As t—>co we have
6=0and

l—arV, V<(ar) !

=lo, ¥=>(an! (10)

so that 6 depends explicitly on the velocity of the block,
and is described by a piecewise linear velocity-weakening
law. Of course, the form of Eq. (8) implies that evolution
of 0 to the exact steady state value given in (10) from
some other initial value will take infinitely long. Howev-
er, at sufficiently long times it is a good approximation.
Assuming (ar)> f (which is required to obtain stick-slip
at slower pulling speeds), when Eq. (10) is substituted into
the friction law (7), we obtain

1—(ar—B)YV, V=<(ar)™!

BV, V>(ar)™! (1

S8 —
Fy=

(where ss denotes steady sliding) corresponding to linear
velocity-weakening friction for ¥V <(ar)”! crossing over
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to linear velocity strengthening friction when ¥V > (a7) 1.

For all of the parameters we have investigated, the
transition from stick-slip to steady sliding occurs at ve-
locities which are somewhat less than (ar)”!, i.e., on the
velocity-weakening branch of the steady state friction.
Note that in the steady sliding regime U =0 so that the
steady state spring force is simply equal to the steady
state friction. This implies that a measurement of the
spring force as a function of pulling speed when V>V,
will exhibit velocity-weakening over a range of velocities
in the neighborhood of the transition (a behavior which
has been observed experimentally [12]), though in some
cases the range of pulling speeds over which this behavior
is observed is very small.

Solidification at zero slip velocity

Second we consider the case which describes freezing
of the lubricant when the system is at rest: U =0 at time
t =0, with 6(t =0)=6,. This analysis applies to the
stuck portions of each stick-slip pulse, as well as to
periods in the stop-start experiment in which the system
is at rest.

Solving Eq. (8) with these initial conditions yields the
exact solution for the state variable:

_ &)
Op+(1—6@gle /™~

o(r) (12)

This functional form implies that when 6,<<1, 0(¢) ex-
hibits a well-defined crossover from a value near its initial
(small) value to a value near unity at a finite characteris-
tic time. In particular, Eq. (12) increases exponentially at
small times, while at large times 6(¢) saturates at unity.
Using (12) we can estimate the time at which 6(¢) crosses
over from its short time to long time behavior. In partic-
ular, the time ¢ required for the system to achieve a value
of, say, =1 is roughly

1_90
o

t*=7ln ~—7lnb, . (13)

In other words, the nucleation time where the lubricant
crossover from a small value of @ to a value of order uni-
ty depends linearly on the parameter 7 and logarithmical-
ly on the initial value 6.

The well-defined crossover time separating small and
large values of 6(¢) is related to the abrupt increase in the
stiction spike AF in the stop-start experiments. In partic-
ular, a crude estimate of AF(¢;) is obtained by relating
the stiction spike to the difference between the static fric-
tion 6(¢;) obtained from Eq. (12) at the end of the stop-
ping interval, and the steady state friction during sliding,
given by F§=06%+pBV, where 6*=60,=1—arV is also
taken to be the approximate initial value of 6(¢) at the on-
set of solidification in Eq. (12). Then, the fact that 6(¢)
exhibits a sharp crossover at 7, of order ¢* suggests that
AF will also increase sharply at this characteristic time.
However, while this form of ¢* agrees qualitatively with
the results of the full equations of motion illustrated in
Fig. 3(b), in terms of both the existence of a sharp cross-
over and the specific manner in which the crossover
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scales with velocity, we have found that good quantita-
tive results for the form of AF(z,) and the value of ¢ * re-
quire much more detailed analysis of Egs. (6)—(8) which
we have performed but which is too cumbersome to be
included explicitly here. In particular, to obtain the more
accurate solution we must take into account corrections
associated with resticking of the block at the beginning of
the stopping period (or slowing down for shorter stop-
ping intervals), and corrections associated with the actual
time the block spends at rest, which is not equal to z,, but
instead will be modified both by the time it takes to stop
and the time it takes to increase the spring force to the
friction threshold after pulling has begun again.

Finally, Eq. (12) can be used to determine the duration
of the sticking portion of a stick-slip pulse, such as those
illustrated in Figs. 2(b) and 4. In particular, if the dis-
placement of the block at the beginning of the sticking in-
terval is taken to be U(t =0)=U, and 6(t =0)=0,,, then
the sticking time satisfies V't —U,=0(t). (Note that U,
and 6, are not adjustable parameters. Instead, because
the stick-slip solution is periodic, their values will be fixed

—_
o

SPRING FORCE F(t)
&
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for our solution by the values of 8 and the spring force at
the end of the slip pulse.) If 8(z)=~1 at the end of the in-
terval, which is strictly true in the limit of infinitesimal
pulling speeds, and is a good approximation for the over-
damped pulses shown in Figs. 2(b) and 4, then sliding ini-
tiates at time

t=t,=~(1+Uy)/V . (14)

The time ¢; which marks the end of the stuck portion of
the stick-slip pulse is marked explicitly on the solution il-
lustrated in Fig. 5, where we compare the approximations
and analytical results of this section to the numerical
solution of the complete equations of motion.

Slip-weakening during the initial stages of sliding

Third we consider the case where the interface is just
beginning to slip at time ¢ =¢,, which we have calculated
above. Again we will assume that the lubricant is initial-
ly fully frozen: 6(¢;)=1, so that a system which is just
beginning to slip at time ¢; will have U(z,)=0 and
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FIG. 4. (a) Spring force F(¢)=—(U — ¥t). (b) Displacement U(z). (c) Velocity U(t) (where the pulling speed V is indicated by the

dotted line). (d) State variable 6(¢) for a single period of the periodic stick-slip motion are illustrated. The parameter values are the
same as those in Fig. 2(b).
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U(t;)=U,, where U, =U,, the same as the initial value
taken above, since the displacement does not change
while the block is at rest.

At the initial stages of slip, when a>>1/7 the first
term on the right hand side of (8) can be ignored, so that
it is a good approximation to write

0=—abU , (15)
from which we obtain

(U—U,)

f=e (16)

Here the state variable 6 depends explicitly on slip

-
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FIG. 5. A comparison between the full solution of the equa-
tions of motion (as in Fig. 4), and the analysis presented in Sec.
IV C (both shown here) reveals that the two solutions are almost
indistinguishable. (a) State variable 6 and (b) illustrates the ve-
locity for a single period of the motion. Over the time interval
[0,2,] the state variable 6 undergoes a freezing transition, which
takes place over a characteristic time interval, over the interval
[2,,2,]6 decreases rapidly, but continuously, over a characteris-
tic slip distance (i.e., exhibits slip-weakening), over the interval
[2,,23]6 begins to freeze at a rate which depends both on time
and slip velocity. The intermediate times ¢, and ¢, are marked
with dotted lines, and the initial and final times correspond to
the limits of the x axis shown.
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AU=U—U,, and “melts” over a characteristic distance
1/a.

Using an additional approximation it is possible to ob-
tain a closed form analytical solution for U(¢) which
agrees with the numerical results at the very beginning of
this branch of the solution. For a piecewise linear ap-
proximation to Eq. (16)

1—aU—U,;), U—U,<a "

9= o, v-u,>a an
during the initial stages of slip we solve
U=(a—1)U+Vt—BU—(1+aU,) (18)
to obtain
U()—U,=A(t—t)+B+Ce *' "Wppe 7"
(19)

where I', = —f3/2+[a—1+(8/2)?]'/? and the constants
are straightforward to obtain: A=—V/(a—1),
B=—BV/(a—1)? C=(—A+BI_)/(T,.—T_), and
D =—(B+C). Note that stick-slip behavior requires
(a—1)>0, which is necessary to obtain the initial slip-
weakening instability in (18) that leads to exponential
growth of the I' | mode in the solution (19). In particu-
lar, this mode soon dominates the behavior, and the solu-
tion grows exponentially at a rate given by I' , =a/B
when a>>1 and (8/2)>>>a.

While the solution (19) provides a good approximation
to the full equation of motion as the block just begins to
become unstuck, the linear approximation (17) to the ex-
ponential slip-weakening law (16) breaks down before we
move to the next branch of the solution. In contrast, a
numerical solution using the exponential slip-weakening
law in (16) to approximate the behavior of the state vari-
able 0 yields a solution which is essentially indistinguish-
able from the full numerical solutions of Egs. (6)—(8) in
the time interval from ¢, to ¢, in Fig. 5. The solutions
agree well up to the point where 6 assumes some
minimum value, which is the only adjustable parameter
we allow in fitting our approximations to the full solu-
tion. Here the minimum corresponds to =5X 10" 12 50
that the lubricant is essentially fully melted. Given this
minimum value of 8 for the fit, it is clear that the solution
to the linearized equation (18) must break down, since
when 6 is that small the exponential in (16) is well beyond
the linear regime. However, the agreement between the
full solution and the solution based on the exponential
slip-weakening law in the time interval [¢,,?,] illustrated
in Fig. 5 is excellent and thus verifies that slip-weakening
is the mechanism best describing the state variable during
this stage of the slip.

The origin of the characteristic distance for melting
comes from the fact that 6 is linearly coupled to the rela-
tive velocity in Eq. (15) so that d6/60 <dU. Additional
temporal dependence of the melting transition may be-
come relevant in regimes where the first term on the right
hand side in Eq. (8) is non-negligible or when Egs. (7) and
(8) are modified to include higher order terms.
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However, it is noteworthy that the existence of a
characteristic distance over which the friction decreases
in boundary lubrication is indirectly supported by the ex-
periments of Reiter et al. [22] which explore the cross-
over from elastic to dissipative response in similar sys-
tems. They find that there is a transition from a fully
elastic response to a partially dissipative response (associ-
ated with stick-slip), which depends on the displacement
amplitude for very small displacements, and is indepen-
dent of frequency. While the typical displacements in
these experiments are orders of magnitude less than those
in Ref. [5], in the case of Reiter et al. the distance 1/a
over which a slip-weakening transition (which may or
may not correspond to a melting transition in their case)
takes place in the film corresponds to a microscopic
length, of order a few nm.

Partial refreezing at slow speeds

When the damping S is sufficiently large the peak ve-
locity is reached at some point during the melting transi-
tion, at which point U begins to decay at a rate governed
by the parameter 5. In the next branch of the solution
(times between t, and t; in Fig. 5) the decay continues
until the velocity of the block approaches the pulling
speed V. Simultaneously, during this interval 0 begins to
increase. It requires a characteristic time interval (which
depends on the pulling speed) for 0 to begin to make a
significant contribution to the friction, which ultimately
causes the block to restick.

In the interval [t¢,,¢5], which begins the moment the
lubricant has reached the maximally melted state and ex-
tends through the moment the block resticks, it is a good
approximation (second line) to the full equation (first line)
to write

G 01=0) _ -
T

=0(r l—aV), (20)

so that for =6, at t =t¢, we have
0=0,exp[(1—atV)(t —t,) /7]
=0,exp[(t —1,)/7'] . (21)

The exponential growth of 6 with time corresponds to the
onset of solidification from the melted state, at a rate
1/7=(1—arV)/7 which is decreased by a factor of
(1—arV¥), compared to the corresponding rate 1/7 asso-
ciated with the initial stages of solidification in (12) when
the system is stationary.

In Eq. (20) we have made two simplifying approxima-
tions. First, we have dropped a factor of (1—@) in the
first term of the right hand side, which is a good approxi-
mation when 6 is small (as will typically be the case after
the slip- -melting transition). In addition, we have re-
placed U in the second term with V. Even though U is
somewhat larger than V at the earliest stages of this
branch of the solution (time ¢, in Fig. 5), the approxima-
tion gives an excellent fit to the full numerical solution.
This will be true as long as  is not too large, so that the
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velocity decays to U = V by the time (roughly 7') that the
exponential growth of 6 begins to play a significant role.
If U(t,)="U, and U(t,)=U, (where we take these ini-
tial conditions from the numerical solution to the ex-
ponential slip-melting transition discussed above), using
this approximation we obtain a solution of (6) of the form

(t—t,)/7 Ay (t—t,) A_(t—t

U(t)=Vt—BV +Pe + Qe+ T RN

(22)
where Ay=—B/2%[(B/2)*—11'2, P=—0,/(1+B/7
+1/7%), Q=[U,—V —P /7' —A_(U,+BV—Vt,—P)]/

(A, —k_ ), and R=U,+BV—Vt,—P—Q. We obtain
the velocity simply by differentiating Eq. (22)

f](t)=V+Lie(t_tz)/H+Q}\+ek+“_t2)
r

+RA_ T

(23)
This branch of the solution agrees well with the results
shown in Fig. 5 in the time interval [t,,7;]. While the
last term in (23) does not play an important role in this
branch of the solution, as V approaches ¥V, each of the
other three terms dominates the behavior in a particular
subinterval. . .

The initial decay from the velocity U, to a speed U=V
occurs at a rate which is determined primarily by the
viscosity 3. Because 0 is initially very small, the system is
simply behaving like an overdamped harmonic oscillator,
which naturally relaxes to the pulling speed. Of the two
exponentially relaxing modes A, A, is the slow mode,
and thus sets the time scale for this initial relaxation,
given roughly by At ., =—1/A, =B when B>>1. Note
that relaxation from above, i.e., U—V™, occurs when
the coefficient Q >0, and corresponds to a continuing de-
crease in the spring force F throughout the slip, as seen
experimentally [23].

If the time associated with the initial decay of the ve-
locity is much less than the time associated with the
growth of 0 (i.e., when B < 7'), there will be an intermedi-
ate interval during which the two decaying modes A
have become negligibly small, while the exponentially
growing term (which is proportional to 6) does not yet
play a significant role. During this period U~ V. Fur-
thermore, because 7’ increases as ¥ — V¥, the duration of
this intermediate interval will increase with increasing
pulling speed.

Finally, while the initial exponential relaxation is con-
trolled by the parameter 3, the exponential increase of 0,
which contributes to U(z) through the second term on
the right hand side of (23), dominates the behavior at the
end of the slip pulse. It is in fact the sharp increase in 6
at a time of order 7’ after this branch of the solution be-
gins, that gives rise to the relatively abrupt return to the
stuck state. The time to stop is given more precisely by
estimating the time #; at which U =0, which is obtained
from (23). When B8< 7' to a good approximation this is
obtained using only the first two terms on the right hand
side of (23), so that
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ty—t, =ty ~TIn (24)

At slower pulling speeds, or higher values of B, the ap-
proximation <7 may not be valid, and the exponential
decay to the pulling speed may not be complete by the
time the block resticks. Under such circumstances, an al-
ternate formula for ¢y,, may be obtained by setting the
sum of the slow mode A, and the exponentially growing
term to zero. In either case because the solidification rate
depends on the approximate slip speed V, the length of
the pulse will increase with increasing pulling speed.

To obtain the full periodic stick-slip solution, we can
now return to the initial stage describing the more rapid
solidification at zero slip velocity, where 6(¢) increases
according to (12) from the initial value 6, which is now
fixed by 6,=06(t =t;). Similarly the value of U, in Eq.
(14), which determines the length of the sticking interval
for the periodic solution, is simply Uy=U(t;)— ¥Vt;. In
the overdamped regime, because 8 returns to a value near
unity before the block slips again, arbitrary initial condi-
tions (with the exception of an initial condition which ex-
actly corresponds to the unstable steady sliding state)
converge very rapidly to the periodic solution, essentially
by the end of the first pulse.

Transition from stick-slip to steady sliding

Finally, we examine the transition from stick-slip to
steady sliding. Figure 6 illustrates the numerical solu-
tions 6(z) and U(t) obtained from the full equations of
motion, Eqgs. (6)-(8), as the velocity is increased from a
value just below V, for ¢ <0 to a value just above V, for
t >0. The time interval shown begins with the last com-
plete slip pulse for V <V,, which agrees well with the
analytical results in this section, and extends through the
crossover to steady sliding where 6(¢) approaches the
steady state value described by (10). Here the transition
is clearly associated with a failure of the block to come to
rest in the last part of the slip pulse described by the par-
tial refreezing at slow speeds, as opposed to some other
scenario such as a failure of the system to refreeze once it
has stuck (which might then be associated with a failure
of our solution during the time interval associated with
slip weakening). In particular, when V' > ¥V, we find that
6(¢) first departs from our analytical results in the branch
described by (21). Rather than the slow but steady ex-
ponential increase in 6 which is predicted by (21), at some
point 6 turns around and begins to decrease, ultimately
approaching the steady state value. From (8) it is clear
that 6 will decrease rather than increase when

(—ILQl<aU. (25)
;

This provides one check of the self-consistency of our
stick-slip solution.

With 6(t) given by Eq. (21), and U(t) given by (23), we
estimate the time ¢3 at which our solution will fail in
terms of the breakdown time tz. In particular, if
tp <tgop (i.e., if self-consistency of the solution fails be-
fore this branch of the solution is complete and the block
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FIG. 6. The transition from stick-slip to steady sliding is as-
sociated with a breakdown in the self-consistency of the analyti-
cal solution over the time interval [¢,,¢;] in Fig. 5 which is asso-
ciated onset of freezing at slow speeds in the stick-slip solution.
Here the pulling speed changes from a value just below ¥V, to a
value slightly greater than ¥V, at time £ =0. When V > V_, rath-
er than a steady increase in 6 (a) as described by (21), the solu-
tion instead approaches the steady state value given in (10). The
velocity is shown in (b), where the dotted line represents the
pulling speed V.

has come to rest) the stick-slip solution given here is no
longer valid, and instead the system crosses over to a
steady sliding state [24]. Using the same approximations
that led to ty,, (i.e., assuming B<<7’), the time 75 that
this occurs is given by

,
P(r+B+1/7—ar)

ty—t,=tg=1'ln

- T
P(r+B—ar)

~7'In , (26)

where P is the same constant that appears in Eq. (22).
The stick-slip solution is no longer self-consistent if
tp <tgop» and there will be a transition to stable sliding.
Thus we obtain a formula for the critical velocity:
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(Bar)Vi—(ar+B+7)V,+1=0. 27)

For larger values of a, where we expect our solution to be
valid, this agrees well with the full equations of motion,
Egs. (6)—(8), as illustrated in Fig. 7. Since ¥, is close to
(ar)”! in the regime where our solution is valid, we can
write ¥, =(a7)”!—e so that to leading order in € we ob-
tain

_ 1
V.=(ar) e
ar artar—af
~(ar) ' —(a?r)7! (28)

where the second approximation is valid when a>>1,
and at>>p.

Note that the numerical results for a vs. V, in Fig. 7
are obtained by fixing the parameters «, 8, and 7. We
then set an initial pulling speed ¥V within the stick-slip
phase, and after observing many stick-slip pulses at a
given V we increment the pulling speed in small steps
AV=10"* until ¥ =V, defined to be the first velocity at
which stick-slip is no longer observed. As a result, most
of the phase boundary is accurate to within 2% of the
measured V.. For the smallest measured value of V,
(corresponding to a=4) the step size is reduced to
AV=5X10"°and V, is obtained to within 6% accuracy.

Finally, while for larger values of a, ¥V, decreases with
increasing a as predicted by (28), numerically we observe
that the converse is true for the smallest values of a as il-
lustrated in Fig. 7. In this regime the stick-slip pulses are
not well described by the approximations discussed in
this section. Instead the melting (i.e., reduction of 6 in an
individual slip-pulse) which takes place is significantly re-
duced, requiring different approximations of Egs. (6)—(8)
than those which have been considered here. In this case

50 T T T T T T T I T T T T
C b T=10 ]
40 - B=30 -]

o L steady sliding ]
20 [— —
10 — stick—slip —

O C 1 1 1 1 J 1 1 1 1 | 1 1 1 1
0.000 0.005 0.010 0.015

FIG. 7. Dynamical phase diagram: « vs. V., separating
stick-slip from steady-sliding solutions. The solid line illustrates
our numerical results based on the full equation of motion, and
the dotted line illustrates our analytical estimate, obtained in
terms of the breakdown of the self-consistent solution (as in Fig.
6). The analytical results are expected to apply when « is large.
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the pulses have a velocity-dependent amplitude, and a
nearly velocity-independent slip-time. However, even in
the absence of detailed analysis it is worth noting that
some sort of a crossover at smaller values of « is expect-
ed. In particular, our observation that stick-slip requires
at>f, that is, the existence of a velocity-weakening
branch in the steady state friction in Eq. (11), implies that
stick-slip should not be observed for the parameters in
Fig. 7 when a = 3.

V. CONCLUSIONS

Rate and state constitutive relations, while purely phe-
nomenological, can provide some important guidelines
for the design of mechanical systems, in terms of both
materials choices and operating conditions. The work
presented here represents the first step towards develop-
ment of such a description for the frictional properties of
boundary lubrication. In particular, we have shown that
the proposed rate and state law compares well to qualita-
tive aspects of the experiments in Ref. [S]. For both the
model and experiment there is a discontinuous transition
between stick-slip and steady sliding at a critical velocity
V., the pulse shapes in the stick-slip regime are qualita-
tively similar, and in stop-start experiments there is a
sharp crossover in the height of the stiction spike at a
finite characteristic time.

Much work remains to be done in order to evaluate the
particular constitutive relation we have proposed. Equa-
tions (6)—(8) were constructed to form a minimal model
that captures certain key differences between the friction-
al properties of dry and lubricated interfaces. As a result,
there is no special reason to expect that this model will
adequately capture all of the subtleties associated with
the detailed quantitative behavior in the lubricated case.
In order to test the model quantitatively, more detailed
fits to experimental data must be performed. Indeed, we
have done some preliminary fits to experimental traces of
individual slip pulses, and these early results show some
surprisingly good quantitative agreements as the pulling
speed is varied [20]. A more comprehensive effort along
these lines, coupled with additional experiments, measur-
ing both the stick-slip and steady sliding frictional prop-
erties are currently in progress and should provide much
better constraints on the form of the constitutive rela-
tions than the qualitative features we have considered
thus far. Measurements of the slip-pulse duration as a
function of pulling speed, and the dynamical phase dia-
gram will be especially helpful.

Our analytical studies of the equations of motion
(6)-(8) provide some insights into the possible dynamical
processes which may play an important role during vari-
ous different stages of stick and slip. Associating the
value of the state variable 8 with the degree of melting of
the lubricant layer, our solutions suggest that these in-
clude time-dependent freezing when the block is at rest,
melting which takes place over a characteristic slip-
distance during the initial stages of slip, and a time- and
velocity-dependent initiation of freezing which follows
the melting process, and ultimately causes the block to
restick. This final process takes place at a rate which is
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reduced relative to the freezing rate when the block is at
rest, and ultimately it is the inability of the lubricant to
refreeze during this final stage of slip which results in the
transition to steady sliding at a critical pulling speed V.
The justification of these physical interpretations ulti-
mately must come from microscopic models. As a first
step, it will be useful to compare our results more quanti-
tatively with results obtained from molecular dynamics
simulations. In fact, in his simulations of the frictional
properties of adsorbed molecules at an interface, Persson
discusses the refreezing of the lubricant at slow slip
speeds in terms of a velocity dependent nucleation of
frozen domains [11], somewhat analogous to our inter-
pretation of the resticking process. In the same manner
used to fit our model to experimental data, it should be
possible to obtain fits to simulations. Thus the constitu-
tive relation has the potential to provide a useful link be-
tween atomistic numerical studies and experiments.
Finally, we emphasize that we have focused on a par-
ticular parameter regime of this model, which we believe
most closely resembles the experiments in the over-
damped regime. While the existence of stick-slip for any
pulling speed required a> 1, and ar>f3, we have made
several additional choices. We have taken a to be large
compared to unity, the characteristic slip distance for the
undamped mass-spring system in our scaled units. This
choice corresponds to selecting a small characteristic dis-
tance AU=1/a over which the slip-melting transition
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takes place. We have taken the viscosity 3 to be large, so
that after the system attains its maximum speed at some
point during the melting process, the velocity relaxes to
the pulling speed slowly (the characteristic time in our
solution is ) compared to time scales associated with the
undamped mass-spring system (7 in our rescaled units).
Finally, we have taken 7 large compared to unity as well,
so that all freezing processes are slow compared to the
inertial time.

When the relative sizes of these different time and
length scales are altered, the behavior of the model can be
quite different. While behavior which is qualitatively
different from the overdamped pulses has been observed
experimentally (e.g., underdamped pulses), it remains an
open question to determine the extent to which these
different regimes are also captured by Egs. (6)—(8), and to
determine the full range of behaviors a single lubricant
system under different mechanical and environmental
constraints might explore.
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